In [1]:
library(haven)
library(tidyverse) 
library(readr)
library(broom)
library(ggplot2)
library(knitr)
library(scales)

data <- read_dta(
  file = "/home/jovyan/Project/cen_ind_2021_pumf_v2.dta",
  col_select = c(TotInc, CIP2021, agegrp, Gender, immstat, pr, wkswrk, NOC21)
)

data_main <- data %>%
  group_by(CIP2021) %>% 
  sample_frac(0.50) %>%  
  ungroup() %>%
  rename(
    Income = TotInc, 
    field = CIP2021, 
    age = agegrp, 
    gender = Gender,
    immigrant = immstat, 
    province = pr, 
    weeks = wkswrk, 
    occupation = NOC21
  ) %>%
  mutate(
    field = as.factor(field), 
    age = as.factor(age), 
    gender = as.factor(gender),
    immigrant = as.factor(immigrant), 
    province = as.factor(province),
    occupation = as.character(occupation),
    
    Income_10k = Income / 10000,
    log_income = log(pmax(Income, 1))
  ) %>%
  filter(!is.na(Income) & Income > 0 & Income < 10000000) 

data_main <- data_main %>%
  filter(field != "99")

field_labels <- c(
  "1" = "Education",
  "2" = "Arts & Communications",
  "3" = "Humanities",
  "4" = "Social Sciences & Law",
  "5" = "Business",
  "6" = "Physical Sciences",
  "7" = "Computer Science & Math",
  "8" = "Engineering",
  "9" = "Agriculture & Natural Resources",
  "10" = "Health",
  "11" = "Services",
  "13" = "Other/Interdisciplinary",
  "88" = "No Specialization"
)

data_main <- data_main %>%
  mutate(field_name = recode(as.character(field), !!!field_labels))

high_skill_noc <- c("0", "1", "2", "3", "4")

data_main <- data_main %>%
  mutate(
    noc_prefix_1dig = substr(occupation, 1, 1), 
    high_skill_job = ifelse(noc_prefix_1dig %in% high_skill_noc, 1L, 0L),
    high_skill_job = as.numeric(high_skill_job)
  ) %>%
  filter(!is.na(log_income))

data_main <- data_main %>%
  mutate(
    weeks_numeric = as.numeric(as.character(weeks)),
    full_time = ifelse(!is.na(weeks_numeric) & weeks_numeric >= 30, 1, 0)
  )

#GENDER DISTRIBUTION
print(table(data_main$gender))

#IMMIGRANT STATUS DISTRIBUTION
print(table(data_main$immigrant))

#COMPREHENSIVE STATISTICS BY FIELD
table_by_field <- data_main %>%
  group_by(field_name) %>%
  summarise(
    N = n(),
    mean_income = mean(Income, na.rm = TRUE),
    median_income = median(Income, na.rm = TRUE),
    sd_income = sd(Income, na.rm = TRUE),
    avg_income_10k = mean(Income_10k, na.rm = TRUE),
    share_high_skill = mean(high_skill_job, na.rm = TRUE),
    share_female = mean(as.numeric(as.character(gender)) == 2, na.rm = TRUE),
    share_immigrant = mean(immigrant != "Non-immigrant", na.rm = TRUE),
    avg_weeks = mean(weeks_numeric, na.rm = TRUE),
    share_full_time = mean(full_time, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  arrange(desc(mean_income))

print(kable(table_by_field, digits = 2, format.args = list(big.mark = ",")))

#STATISTICS BY FIELD AND GENDER 
table_by_field_gender <- data_main %>%
  group_by(field_name, gender) %>%
  summarise(
    N = n(),
    mean_income = mean(Income, na.rm = TRUE),
    median_income = median(Income, na.rm = TRUE),
    share_high_skill = mean(high_skill_job, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  arrange(field_name, gender)

print(kable(table_by_field_gender, digits = 2, format.args = list(big.mark = ",")))

#STATISTICS BY FIELD AND PROVINCE
table_by_field_province <- data_main %>%
  group_by(field_name, province) %>%
  summarise(
    N = n(),
    mean_income = mean(Income, na.rm = TRUE),
    share_high_skill = mean(high_skill_job, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  arrange(field_name, province)

print(kable(table_by_field_province, digits = 2, format.args = list(big.mark = ",")))

# OCCUPATION MODELS

# Model 1: Field only (baseline)
occ_model1 <- lm(high_skill_job ~ field_name, data = data_main)

# Model 2: Add demographic controls
occ_model2 <- lm(high_skill_job ~ field_name + gender + immigrant, data = data_main)

# Model 3: Add work intensity
occ_model3 <- lm(high_skill_job ~ field_name + gender + immigrant + weeks, data = data_main)

# Model 4: Add age (experience proxy)
occ_model4 <- lm(high_skill_job ~ field_name + gender + immigrant + weeks + age, data = data_main)

# Model 5: Full model with province
occ_model5 <- lm(high_skill_job ~ field_name + gender + immigrant + weeks + age + province, 
                 data = data_main)

#Occupation Model 1: Field Only
tidy_occ1 <- tidy(occ_model1, conf.int = TRUE)
print(kable(tidy_occ1, digits = 4))

#Occupation Model 2: + Demographics
tidy_occ2 <- tidy(occ_model2, conf.int = TRUE)
print(kable(tidy_occ2, digits = 4))

#Occupation Model 3: + Work
tidy_occ3 <- tidy(occ_model3, conf.int = TRUE)
print(kable(tidy_occ3, digits = 4))

#Occupation Model 4: + Age
tidy_occ4 <- tidy(occ_model4, conf.int = TRUE)
print(kable(tidy_occ4, digits = 4))

#Occupation Model 5: Full Model
tidy_occ5 <- tidy(occ_model5, conf.int = TRUE)
print(kable(tidy_occ5, digits = 4))

#Occupation Models Fit Statistics
occ_models_fit <- data.frame(
  Model = c("M1: Field", "M2: +Demographics", "M3: +Work", "M4: +Age", "M5: +Province"),
  R_squared = c(summary(occ_model1)$r.squared,
                summary(occ_model2)$r.squared,
                summary(occ_model3)$r.squared,
                summary(occ_model4)$r.squared,
                summary(occ_model5)$r.squared),
  Adj_R_squared = c(summary(occ_model1)$adj.r.squared,
                    summary(occ_model2)$adj.r.squared,
                    summary(occ_model3)$adj.r.squared,
                    summary(occ_model4)$adj.r.squared,
                    summary(occ_model5)$adj.r.squared),
  N = c(nobs(occ_model1), nobs(occ_model2), nobs(occ_model3), 
        nobs(occ_model4), nobs(occ_model5))
)
print(kable(occ_models_fit, digits = 4))

# INCOME MODELS
inc_model1 <- lm(Income_10k ~ field_name, data = data_main)
inc_model2 <- lm(Income_10k ~ field_name + gender + immigrant, data = data_main)
inc_model3 <- lm(Income_10k ~ field_name + gender + immigrant + weeks, data = data_main)
inc_model4 <- lm(Income_10k ~ field_name + gender + immigrant + weeks + age, data = data_main)
inc_model5 <- lm(Income_10k ~ field_name + gender + immigrant + weeks + age + province, 
                 data = data_main)

#Income Model 1: Field Only
tidy_inc1 <- tidy(inc_model1, conf.int = TRUE)
print(kable(tidy_inc1, digits = 4))

#Income Model 2: + Demographics
tidy_inc2 <- tidy(inc_model2, conf.int = TRUE)
print(kable(tidy_inc2, digits = 4))

#Income Model 3: + Work
tidy_inc3 <- tidy(inc_model3, conf.int = TRUE)
print(kable(tidy_inc3, digits = 4))

#Income Model 4: + Age
tidy_inc4 <- tidy(inc_model4, conf.int = TRUE)
print(kable(tidy_inc4, digits = 4))

#Income Model 5: Full Model
tidy_inc5 <- tidy(inc_model5, conf.int = TRUE)
print(kable(tidy_inc5, digits = 4))

#Income Models Fit Statistics
inc_models_fit <- data.frame(
  Model = c("M1: Field", "M2: +Demographics", "M3: +Work", "M4: +Age", "M5: +Province"),
  R_squared = c(summary(inc_model1)$r.squared,
                summary(inc_model2)$r.squared,
                summary(inc_model3)$r.squared,
                summary(inc_model4)$r.squared,
                summary(inc_model5)$r.squared),
  Adj_R_squared = c(summary(inc_model1)$adj.r.squared,
                    summary(inc_model2)$adj.r.squared,
                    summary(inc_model3)$adj.r.squared,
                    summary(inc_model4)$adj.r.squared,
                    summary(inc_model5)$adj.r.squared),
  N = c(nobs(inc_model1), nobs(inc_model2), nobs(inc_model3), 
        nobs(inc_model4), nobs(inc_model5))
)
print(kable(inc_models_fit, digits = 4))

# LOG INCOME MODELS

loginc_model1 <- lm(log_income ~ field_name, data = data_main)
loginc_model2 <- lm(log_income ~ field_name + gender + immigrant, data = data_main)
loginc_model3 <- lm(log_income ~ field_name + gender + immigrant + weeks, data = data_main)
loginc_model4 <- lm(log_income ~ field_name + gender + immigrant + weeks + age, data = data_main)
loginc_model5 <- lm(log_income ~ field_name + gender + immigrant + weeks + age + province, 
                    data = data_main)

#Log Income Model 1: Field Only
tidy_loginc1 <- tidy(loginc_model1, conf.int = TRUE)
print(kable(tidy_loginc1, digits = 4))

#Log Income Model 2: + Demographics
tidy_loginc2 <- tidy(loginc_model2, conf.int = TRUE)
print(kable(tidy_loginc2, digits = 4))

#Log Income Model 3: + Work
tidy_loginc3 <- tidy(loginc_model3, conf.int = TRUE)
print(kable(tidy_loginc3, digits = 4))

#Log Income Model 4: + Age
tidy_loginc4 <- tidy(loginc_model4, conf.int = TRUE)
print(kable(tidy_loginc4, digits = 4))

#Log Income Model 5: Full Model
tidy_loginc5 <- tidy(loginc_model5, conf.int = TRUE)
print(kable(tidy_loginc5, digits = 4))

#Log Income Models Fit Statistics
loginc_models_fit <- data.frame(
  Model = c("M1: Field", "M2: +Demographics", "M3: +Work", "M4: +Age", "M5: +Province"),
  R_squared = c(summary(loginc_model1)$r.squared,
                summary(loginc_model2)$r.squared,
                summary(loginc_model3)$r.squared,
                summary(loginc_model4)$r.squared,
                summary(loginc_model5)$r.squared),
  Adj_R_squared = c(summary(loginc_model1)$adj.r.squared,
                    summary(loginc_model2)$adj.r.squared,
                    summary(loginc_model3)$adj.r.squared,
                    summary(loginc_model4)$adj.r.squared,
                    summary(loginc_model5)$adj.r.squared),
  N = c(nobs(loginc_model1), nobs(loginc_model2), nobs(loginc_model3), 
        nobs(loginc_model4), nobs(loginc_model5))
)
print(kable(loginc_models_fit, digits = 4))

# INTERACTION MODEL
inc_interaction <- lm(Income_10k ~ field_name * gender + immigrant + weeks + age + province, 
                      data = data_main)

tidy_inc_interaction <- tidy(inc_interaction, conf.int = TRUE)
print(kable(tidy_inc_interaction, digits = 4))

# SUMMARY STATISTICS
overall_summary <- data_main %>%
  summarise(
    Total_N = n(),
    Mean_Income = mean(Income, na.rm = TRUE),
    Median_Income = median(Income, na.rm = TRUE),
    SD_Income = sd(Income, na.rm = TRUE),
    Share_High_Skill = mean(high_skill_job, na.rm = TRUE),
    Share_Female = mean(as.numeric(as.character(gender)) == 2, na.rm = TRUE),
    Share_Immigrant = mean(immigrant != "Non-immigrant", na.rm = TRUE),
    Mean_Weeks_Worked = mean(weeks_numeric, na.rm = TRUE)
  )
print(kable(overall_summary, digits = 2, format.args = list(big.mark = ",")))

#SUMMARY BY GENDER
summary_by_gender <- data_main %>%
  group_by(gender) %>%
  summarise(
    N = n(),
    Mean_Income = mean(Income, na.rm = TRUE),
    Median_Income = median(Income, na.rm = TRUE),
    Share_High_Skill = mean(high_skill_job, na.rm = TRUE),
    .groups = "drop"
  )
print(kable(summary_by_gender, digits = 2, format.args = list(big.mark = ",")))

#SUMMARY BY IMMIGRANT STATUS
summary_by_immigrant <- data_main %>%
  group_by(immigrant) %>%
  summarise(
    N = n(),
    Mean_Income = mean(Income, na.rm = TRUE),
    Median_Income = median(Income, na.rm = TRUE),
    Share_High_Skill = mean(high_skill_job, na.rm = TRUE),
    .groups = "drop"
  )
print(kable(summary_by_immigrant, digits = 2, format.args = list(big.mark = ",")))

#SUMMARY BY PROVINCE
summary_by_province <- data_main %>%
  group_by(province) %>%
  summarise(
    N = n(),
    Mean_Income = mean(Income, na.rm = TRUE),
    Median_Income = median(Income, na.rm = TRUE),
    Share_High_Skill = mean(high_skill_job, na.rm = TRUE),
    .groups = "drop"
  )
print(kable(summary_by_province, digits = 2, format.args = list(big.mark = ",")))

# ROBUSTNESS CHECK
data_main <- data_main %>%
  mutate(high_skill_narrow = ifelse(noc_prefix_1dig %in% c("0", "2", "3"), 1, 0))

occ_alt_model <- lm(high_skill_narrow ~ field_name + gender + immigrant + weeks + age + province, 
                    data = data_main)

tidy_occ_alt <- tidy(occ_alt_model, conf.int = TRUE)
print(kable(tidy_occ_alt, digits = 4))

# FIGURES
fig1_data <- table_by_field %>%
  arrange(mean_income) %>%
  mutate(field_name = factor(field_name, levels = field_name))

fig1 <- ggplot(fig1_data, aes(x = field_name, y = mean_income)) +
  geom_col(fill = "steelblue", alpha = 0.8) +
  coord_flip() +
  scale_y_continuous(labels = dollar_format(prefix = "$")) +
  labs(
    title = "Average Annual Income by Field of Study",
    subtitle = "2021 Canadian Census (Cleaned Data)",
    x = NULL,
    y = "Average Income"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    axis.text.y = element_text(size = 10)
  )

ggsave("/home/jovyan/Project/fig1_income_by_field_clean.png", fig1, 
       width = 10, height = 7, dpi = 300)

fig2_data <- table_by_field %>%
  arrange(share_high_skill) %>%
  mutate(field_name = factor(field_name, levels = field_name))

fig2 <- ggplot(fig2_data, aes(x = field_name, y = share_high_skill * 100)) +
  geom_col(fill = "darkgreen", alpha = 0.8) +
  coord_flip() +
  labs(
    title = "High-Skill Employment Rate by Field of Study",
    subtitle = "Management, Business, Science, Health, or Education/Law",
    x = NULL,
    y = "High-Skill Employment Rate (%)"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    axis.text.y = element_text(size = 10)
  )

ggsave("/home/jovyan/Project/fig2_highskill_by_field_clean.png", fig2, 
       width = 10, height = 7, dpi = 300)

fig3_data <- table_by_field_gender %>%
  group_by(field_name) %>%
  filter(n() == 2) %>%
  ungroup() %>%
  mutate(gender_label = ifelse(gender == "1", "Male", "Female"))

fig3 <- ggplot(fig3_data, aes(x = field_name, y = mean_income, fill = gender_label)) +
  geom_col(position = "dodge", alpha = 0.8) +
  coord_flip() +
  scale_y_continuous(labels = dollar_format(prefix = "$")) +
  scale_fill_manual(values = c("Male" = "#56B4E9", "Female" = "#E69F00")) +
  labs(
    title = "Average Income by Field and Gender",
    subtitle = "Gender wage gaps across fields",
    x = NULL,
    y = "Average Income",
    fill = "Gender"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    axis.text.y = element_text(size = 9),
    legend.position = "bottom"
  )

ggsave("/home/jovyan/Project/fig3_income_by_field_gender_clean.png", fig3, 
       width = 10, height = 8, dpi = 300)

field_coefs <- tidy_inc5 %>%
  filter(str_detect(term, "^field_name")) %>%
  mutate(
    field_label = str_remove(term, "^field_name"),
    estimate_10k = estimate,
    ci_lower = conf.low,
    ci_upper = conf.high
  ) %>%
  arrange(estimate_10k)

fig4 <- ggplot(field_coefs, aes(x = reorder(field_label, estimate_10k), y = estimate_10k)) +
  geom_point(size = 3, color = "darkblue") +
  geom_errorbar(aes(ymin = ci_lower, ymax = ci_upper), width = 0.2, color = "darkblue") +
  geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
  coord_flip() +
  labs(
    title = "Field of Study Effects on Income",
    subtitle = "From full model (relative to reference field)",
    x = NULL,
    y = "Income Effect ($10,000s)"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    axis.text.y = element_text(size = 10)
  )

ggsave("/home/jovyan/Project/fig4_field_coefficients_clean.png", fig4, 
       width = 10, height = 7, dpi = 300)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.1.0     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Attaching package: ‘scales’


The following object is masked from ‘package:purrr’:

    discard


The following object is masked from ‘package:readr’:

    col_factor


     1      2 
200885 191741 

     1      2      3     88 
279338 103332   9408    548 


|field_name                      |       N| mean_income| median_income| sd_income| avg_income_10k| share_high_skill| share_female| share_immigrant| avg_weeks| share_full_time|
|:-------------------------------|-------:|-----------:|-------------:|---------:|--------------:|----------------:|------------:|---------------:|---------:|---------------:|
|Computer Science & Math         |  10,022|   74,766.82|        61,000| 77,893.54|           7.48|             0.39|         0.68|               1|      5.71|               0|
|Engineering                     |  46,125|   71,511.39|        58,000| 71,271.35|           7.15|             0.56|         0.90|               1|      5.79|               0|
|Business                        |  49,123|   70,871.78|        52,000| 86,489.91|           7.09|             0.62|         0.39|               1|      5.74|               0|
|Physical Sciences               |   9,219|   68,689.31|        51,000| 77,471.39|           6.87|             0.53|         0.48|               1|      5.58|               0|
|Social Sciences & Law           |  26,004|   67,683.41|        50,000| 81,059.45|           6.77|             0.66|         0.33|               1|      5.58|               0|
|Health                          |  31,852|   64,279.56|        51,000| 65,370.96|           6.43|             0.42|         0.19|               1|      5.75|               0|
|Education                       |  14,668|   63,532.61|        58,000| 41,323.96|           6.35|             0.62|         0.23|               1|      6.27|               0|
|Agriculture & Natural Resources |   4,657|   59,451.59|        50,000| 51,068.31|           5.95|             0.58|         0.58|               1|      5.73|               0|
|Humanities                      |  11,901|   55,642.64|        44,000| 57,495.57|           5.56|             0.60|         0.38|               1|      5.80|               0|
|No Specialization               |   5,707|   52,413.44|        41,000| 48,328.22|           5.24|             0.60|         0.46|               1|      5.06|               0|
|Services                        |  12,888|   51,709.46|        42,000| 44,225.79|           5.17|             0.69|         0.51|               1|      5.51|               0|
|Arts & Communications           |   7,853|   48,339.85|        39,000| 45,716.35|           4.83|             0.68|         0.43|               1|      5.34|               0|
|Other/Interdisciplinary         | 162,607|   38,109.57|        29,000| 40,792.11|           3.81|             0.51|         0.50|               1|      6.15|               0|


|field_name                      |gender |      N| mean_income| median_income| share_high_skill|
|:-------------------------------|:------|------:|-----------:|-------------:|----------------:|
|Agriculture & Natural Resources |1      |  1,951|   51,183.65|        43,000|             0.59|
|Agriculture & Natural Resources |2      |  2,706|   65,412.70|        55,000|             0.58|
|Arts & Communications           |1      |  4,505|   44,482.89|        37,000|             0.66|
|Arts & Communications           |2      |  3,348|   53,529.69|        42,000|             0.71|
|Business                        |1      | 29,750|   58,442.76|        48,000|             0.57|
|Business                        |2      | 19,373|   89,958.31|        61,000|             0.70|
|Computer Science & Math         |1      |  3,175|   62,710.16|        51,000|             0.42|
|Computer Science & Math         |2      |  6,847|   80,357.58|        65,000|             0.37|
|Education                       |1      | 11,359|   60,440.81|        55,000|             0.62|
|Education                       |2      |  3,309|   74,146.02|        71,000|             0.63|
|Engineering                     |1      |  4,532|   60,650.37|        48,000|             0.43|
|Engineering                     |2      | 41,593|   72,694.82|        59,000|             0.58|
|Health                          |1      | 25,870|   58,240.13|        49,000|             0.42|
|Health                          |2      |  5,982|   90,397.93|        62,000|             0.46|
|Humanities                      |1      |  7,419|   50,668.21|        41,000|             0.57|
|Humanities                      |2      |  4,482|   63,876.76|        48,000|             0.66|
|No Specialization               |1      |  3,058|   48,412.51|        39,000|             0.57|
|No Specialization               |2      |  2,649|   57,032.10|        44,000|             0.63|
|Other/Interdisciplinary         |1      | 80,829|   32,474.73|        26,000|             0.41|
|Other/Interdisciplinary         |2      | 81,778|   43,679.03|        34,000|             0.60|
|Physical Sciences               |1      |  4,760|   58,681.13|        45,000|             0.56|
|Physical Sciences               |2      |  4,459|   79,373.08|        59,000|             0.51|
|Services                        |1      |  6,268|   38,606.82|        33,000|             0.63|
|Services                        |2      |  6,620|   64,115.40|        54,000|             0.74|
|Social Sciences & Law           |1      | 17,409|   57,723.57|        47,000|             0.65|
|Social Sciences & Law           |2      |  8,595|   87,856.86|        61,000|             0.69|


|field_name                      |province |      N| mean_income| share_high_skill|
|:-------------------------------|:--------|------:|-----------:|----------------:|
|Agriculture & Natural Resources |10       |     33|   47,000.00|             0.52|
|Agriculture & Natural Resources |11       |     11|   53,909.09|             0.45|
|Agriculture & Natural Resources |12       |     91|   51,389.66|             0.47|
|Agriculture & Natural Resources |13       |     88|   60,286.38|             0.43|
|Agriculture & Natural Resources |24       |  1,217|   53,688.97|             0.63|
|Agriculture & Natural Resources |35       |  1,537|   61,425.65|             0.56|
|Agriculture & Natural Resources |46       |    177|   68,355.72|             0.64|
|Agriculture & Natural Resources |47       |    203|   69,936.95|             0.62|
|Agriculture & Natural Resources |48       |    614|   61,913.69|             0.63|
|Agriculture & Natural Resources |59       |    675|   58,725.22|             0.52|
|Agriculture & Natural Resources |70       |     11|   94,454.55|             0.45|
|Arts & Communications           |10       |     35|   43,485.71|             0.66|
|Arts & Communications           |11       |     10|   54,000.00|             0.90|
|Arts & Communications           |12       |    124|   39,580.68|             0.62|
|Arts & Communications           |13       |     72|   48,022.22|             0.60|
|Arts & Communications           |24       |  2,145|   46,131.92|             0.70|
|Arts & Communications           |35       |  3,246|   50,425.58|             0.68|
|Arts & Communications           |46       |    157|   42,831.97|             0.64|
|Arts & Communications           |47       |     84|   47,641.07|             0.65|
|Arts & Communications           |48       |    617|   47,892.01|             0.66|
|Arts & Communications           |59       |  1,360|   48,547.04|             0.67|
|Arts & Communications           |70       |      3|   83,666.67|             0.33|
|Business                        |10       |    639|   61,102.78|             0.55|
|Business                        |11       |    217|   55,309.69|             0.48|
|Business                        |12       |  1,343|   56,091.28|             0.53|
|Business                        |13       |    913|   58,407.80|             0.56|
|Business                        |24       | 12,474|   67,135.83|             0.60|
|Business                        |35       | 19,331|   76,379.28|             0.64|
|Business                        |46       |  1,387|   63,314.00|             0.60|
|Business                        |47       |  1,193|   63,901.28|             0.59|
|Business                        |48       |  5,023|   75,266.55|             0.65|
|Business                        |59       |  6,519|   67,135.65|             0.62|
|Business                        |70       |     84|   95,459.83|             0.42|
|Computer Science & Math         |10       |     97|   66,188.88|             0.45|
|Computer Science & Math         |11       |     26|   57,461.54|             0.27|
|Computer Science & Math         |12       |    224|   65,370.70|             0.40|
|Computer Science & Math         |13       |    143|   63,251.98|             0.41|
|Computer Science & Math         |24       |  2,304|   69,128.48|             0.37|
|Computer Science & Math         |35       |  4,593|   79,288.82|             0.38|
|Computer Science & Math         |46       |    271|   58,118.84|             0.43|
|Computer Science & Math         |47       |    162|   64,591.66|             0.41|
|Computer Science & Math         |48       |    860|   72,144.38|             0.43|
|Computer Science & Math         |59       |  1,340|   78,999.95|             0.41|
|Computer Science & Math         |70       |      2|   73,500.00|             0.50|
|Education                       |10       |    243|   64,705.11|             0.53|
|Education                       |11       |     49|   68,359.47|             0.55|
|Education                       |12       |    394|   62,600.74|             0.58|
|Education                       |13       |    342|   61,063.24|             0.58|
|Education                       |24       |  3,940|   58,556.68|             0.64|
|Education                       |35       |  4,638|   67,486.23|             0.60|
|Education                       |46       |    571|   62,790.55|             0.67|
|Education                       |47       |    512|   62,911.55|             0.64|
|Education                       |48       |  1,730|   68,206.02|             0.67|
|Education                       |59       |  2,203|   60,337.90|             0.60|
|Education                       |70       |     46|   99,472.72|             0.83|
|Engineering                     |10       |    767|   69,477.93|             0.56|
|Engineering                     |11       |    160|   51,661.21|             0.63|
|Engineering                     |12       |  1,290|   57,490.96|             0.55|
|Engineering                     |13       |    864|   59,746.67|             0.57|
|Engineering                     |24       | 11,541|   63,878.37|             0.59|
|Engineering                     |35       | 16,662|   72,469.48|             0.53|
|Engineering                     |46       |  1,307|   68,273.80|             0.60|
|Engineering                     |47       |  1,218|   73,995.27|             0.64|
|Engineering                     |48       |  6,131|   87,289.01|             0.60|
|Engineering                     |59       |  6,111|   72,906.13|             0.55|
|Engineering                     |70       |     74|   85,918.93|             0.58|
|Health                          |10       |    436|   62,535.08|             0.41|
|Health                          |11       |    114|   57,747.39|             0.33|
|Health                          |12       |    906|   56,390.42|             0.35|
|Health                          |13       |    683|   58,564.95|             0.39|
|Health                          |24       |  6,807|   65,802.38|             0.43|
|Health                          |35       | 12,379|   63,380.73|             0.42|
|Health                          |46       |  1,167|   63,841.26|             0.42|
|Health                          |47       |    959|   66,218.35|             0.43|
|Health                          |48       |  3,800|   66,935.02|             0.46|
|Health                          |59       |  4,549|   64,109.38|             0.41|
|Health                          |70       |     52|  115,286.88|             0.21|
|Humanities                      |10       |     83|   49,108.43|             0.59|
|Humanities                      |11       |     40|   55,465.35|             0.40|
|Humanities                      |12       |    268|   56,714.88|             0.58|
|Humanities                      |13       |    137|   52,082.59|             0.64|
|Humanities                      |24       |  2,991|   47,367.05|             0.62|
|Humanities                      |35       |  5,052|   60,939.28|             0.59|
|Humanities                      |46       |    332|   48,121.10|             0.57|
|Humanities                      |47       |    185|   51,194.61|             0.56|
|Humanities                      |48       |    885|   58,682.27|             0.64|
|Humanities                      |59       |  1,918|   55,181.15|             0.60|
|Humanities                      |70       |     10|   81,500.00|             0.60|
|No Specialization               |10       |    150|   53,962.22|             0.56|
|No Specialization               |11       |     97|   51,078.23|             0.49|
|No Specialization               |12       |    270|   49,747.81|             0.57|
|No Specialization               |13       |    265|   50,868.09|             0.57|
|No Specialization               |24       |    714|   52,078.23|             0.63|
|No Specialization               |35       |  1,995|   51,673.08|             0.60|
|No Specialization               |46       |    406|   46,830.94|             0.59|
|No Specialization               |47       |    336|   50,652.18|             0.60|
|No Specialization               |48       |    614|   53,668.93|             0.63|
|No Specialization               |59       |    701|   54,158.28|             0.62|
|No Specialization               |70       |    159|   75,099.26|             0.43|
|Other/Interdisciplinary         |10       |  2,619|   31,618.18|             0.44|
|Other/Interdisciplinary         |11       |    652|   33,956.47|             0.55|
|Other/Interdisciplinary         |12       |  4,447|   34,053.31|             0.48|
|Other/Interdisciplinary         |13       |  3,995|   33,916.43|             0.48|
|Other/Interdisciplinary         |24       | 34,929|   34,984.23|             0.49|
|Other/Interdisciplinary         |35       | 62,233|   38,274.65|             0.49|
|Other/Interdisciplinary         |46       |  6,673|   37,226.59|             0.52|
|Other/Interdisciplinary         |47       |  5,366|   40,948.41|             0.55|
|Other/Interdisciplinary         |48       | 18,208|   43,651.03|             0.57|
|Other/Interdisciplinary         |59       | 22,939|   39,881.09|             0.53|
|Other/Interdisciplinary         |70       |    546|   42,713.21|             0.39|
|Physical Sciences               |10       |     72|   67,837.79|             0.49|
|Physical Sciences               |11       |     26|   57,615.38|             0.15|
|Physical Sciences               |12       |    222|   64,543.90|             0.47|
|Physical Sciences               |13       |    118|   69,319.56|             0.50|
|Physical Sciences               |24       |  2,020|   59,154.76|             0.58|
|Physical Sciences               |35       |  3,959|   71,873.73|             0.52|
|Physical Sciences               |46       |    233|   65,476.41|             0.50|
|Physical Sciences               |47       |    158|   70,028.11|             0.48|
|Physical Sciences               |48       |  1,039|   77,437.26|             0.52|
|Physical Sciences               |59       |  1,364|   67,880.14|             0.53|
|Physical Sciences               |70       |      8|  118,625.00|             0.62|
|Services                        |10       |    276|   57,885.30|             0.71|
|Services                        |11       |     41|   49,512.20|             0.71|
|Services                        |12       |    406|   46,633.01|             0.69|
|Services                        |13       |    334|   49,366.82|             0.66|
|Services                        |24       |  3,851|   49,798.29|             0.71|
|Services                        |35       |  4,498|   52,626.07|             0.67|
|Services                        |46       |    345|   49,958.85|             0.65|
|Services                        |47       |    351|   54,548.87|             0.69|
|Services                        |48       |  1,181|   57,407.64|             0.73|
|Services                        |59       |  1,574|   49,695.35|             0.65|
|Services                        |70       |     31|   68,290.32|             0.42|
|Social Sciences & Law           |10       |    183|   61,149.36|             0.67|
|Social Sciences & Law           |11       |     63|   63,174.95|             0.49|
|Social Sciences & Law           |12       |    624|   60,367.52|             0.63|
|Social Sciences & Law           |13       |    349|   56,030.06|             0.63|
|Social Sciences & Law           |24       |  5,612|   62,862.82|             0.69|
|Social Sciences & Law           |35       | 12,128|   71,500.09|             0.67|
|Social Sciences & Law           |46       |    621|   60,036.74|             0.64|
|Social Sciences & Law           |47       |    389|   60,595.58|             0.64|
|Social Sciences & Law           |48       |  2,217|   71,122.60|             0.64|
|Social Sciences & Law           |59       |  3,777|   65,210.40|             0.64|
|Social Sciences & Law           |70       |     41|   70,073.17|             0.46|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   0.5817|    0.0072|   80.6463|  0.0000|   0.5676|    0.5958|
|field_nameArts & Communications   |   0.0991|    0.0091|   10.8803|  0.0000|   0.0812|    0.1169|
|field_nameBusiness                |   0.0372|    0.0075|    4.9304|  0.0000|   0.0224|    0.0520|
|field_nameComputer Science & Math |  -0.1947|    0.0087|  -22.2987|  0.0000|  -0.2118|   -0.1775|
|field_nameEducation               |   0.0401|    0.0083|    4.8464|  0.0000|   0.0239|    0.0564|
|field_nameEngineering             |  -0.0185|    0.0076|   -2.4381|  0.0148|  -0.0333|   -0.0036|
|field_nameHealth                  |  -0.1578|    0.0077|  -20.4351|  0.0000|  -0.1729|   -0.1427|
|field_nameHumanities              |   0.0203|    0.0085|    2.3913|  0.0168|   0.0037|    0.0370|
|field_nameNo Specialization       |   0.0160|    0.0097|    1.6442|  0.1001|  -0.0031|    0.0350|
|field_nameOther/Interdisciplinary |  -0.0764|    0.0073|  -10.4435|  0.0000|  -0.0907|   -0.0621|
|field_namePhysical Sciences       |  -0.0499|    0.0088|   -5.6353|  0.0000|  -0.0672|   -0.0325|
|field_nameServices                |   0.1047|    0.0084|   12.4463|  0.0000|   0.0883|    0.1212|
|field_nameSocial Sciences & Law   |   0.0813|    0.0078|   10.3860|  0.0000|   0.0660|    0.0967|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   0.5168|    0.0072|   71.5462|  0.0000|   0.5027|    0.5310|
|field_nameArts & Communications   |   0.1212|    0.0090|   13.4183|  0.0000|   0.1035|    0.1389|
|field_nameBusiness                |   0.0667|    0.0075|    8.9003|  0.0000|   0.0520|    0.0814|
|field_nameComputer Science & Math |  -0.1977|    0.0087|  -22.7945|  0.0000|  -0.2147|   -0.1807|
|field_nameEducation               |   0.0874|    0.0082|   10.6200|  0.0000|   0.0713|    0.1035|
|field_nameEngineering             |  -0.0530|    0.0075|   -7.0430|  0.0000|  -0.0678|   -0.0383|
|field_nameHealth                  |  -0.1028|    0.0077|  -13.3776|  0.0000|  -0.1179|   -0.0877|
|field_nameHumanities              |   0.0532|    0.0084|    6.2946|  0.0000|   0.0366|    0.0697|
|field_nameNo Specialization       |   0.0395|    0.0097|    4.0923|  0.0000|   0.0206|    0.0584|
|field_nameOther/Interdisciplinary |  -0.0628|    0.0073|   -8.6548|  0.0000|  -0.0770|   -0.0486|
|field_namePhysical Sciences       |  -0.0285|    0.0088|   -3.2445|  0.0012|  -0.0457|   -0.0113|
|field_nameServices                |   0.1143|    0.0083|   13.7047|  0.0000|   0.0980|    0.1307|
|field_nameSocial Sciences & Law   |   0.1170|    0.0078|   15.0444|  0.0000|   0.1018|    0.1322|
|gender2                           |   0.1249|    0.0017|   74.4440|  0.0000|   0.1216|    0.1282|
|immigrant2                        |  -0.0546|    0.0018|  -30.4791|  0.0000|  -0.0581|   -0.0510|
|immigrant3                        |   0.0806|    0.0051|   15.6917|  0.0000|   0.0706|    0.0907|
|immigrant88                       |  -0.0582|    0.0209|   -2.7855|  0.0053|  -0.0991|   -0.0172|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   1.1652|    0.0060|  194.2425|   0e+00|   1.1534|    1.1769|
|field_nameArts & Communications   |   0.0742|    0.0073|   10.1852|   0e+00|   0.0599|    0.0885|
|field_nameBusiness                |   0.0639|    0.0060|   10.5730|   0e+00|   0.0521|    0.0758|
|field_nameComputer Science & Math |  -0.1921|    0.0070|  -27.4409|   0e+00|  -0.2058|   -0.1784|
|field_nameEducation               |   0.1358|    0.0066|   20.4483|   0e+00|   0.1228|    0.1488|
|field_nameEngineering             |  -0.0363|    0.0061|   -5.9755|   0e+00|  -0.0482|   -0.0244|
|field_nameHealth                  |  -0.1130|    0.0062|  -18.2177|   0e+00|  -0.1251|   -0.1008|
|field_nameHumanities              |   0.0549|    0.0068|    8.0619|   0e+00|   0.0416|    0.0683|
|field_nameNo Specialization       |  -0.0345|    0.0078|   -4.4287|   0e+00|  -0.0498|   -0.0192|
|field_nameOther/Interdisciplinary |  -0.0195|    0.0059|   -3.3349|   9e-04|  -0.0310|   -0.0080|
|field_namePhysical Sciences       |  -0.0470|    0.0071|   -6.6364|   0e+00|  -0.0609|   -0.0331|
|field_nameServices                |   0.0876|    0.0067|   13.0064|   0e+00|   0.0744|    0.1008|
|field_nameSocial Sciences & Law   |   0.0929|    0.0063|   14.8043|   0e+00|   0.0806|    0.1052|
|gender2                           |   0.0960|    0.0014|   70.7770|   0e+00|   0.0933|    0.0986|
|immigrant2                        |  -0.0452|    0.0014|  -31.2611|   0e+00|  -0.0480|   -0.0423|
|immigrant3                        |  -0.0334|    0.0042|   -8.0426|   0e+00|  -0.0416|   -0.0253|
|immigrant88                       |  -0.1515|    0.0169|   -8.9841|   0e+00|  -0.1845|   -0.1184|
|weeks                             |  -0.1101|    0.0002| -458.5274|   0e+00|  -0.1106|   -0.1097|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   1.0261|    0.0073|  140.5882|  0.0000|   1.0118|    1.0404|
|field_nameArts & Communications   |   0.0713|    0.0070|   10.1229|  0.0000|   0.0575|    0.0851|
|field_nameBusiness                |   0.0593|    0.0058|   10.1474|  0.0000|   0.0478|    0.0708|
|field_nameComputer Science & Math |  -0.2145|    0.0068|  -31.7057|  0.0000|  -0.2278|   -0.2013|
|field_nameEducation               |   0.1601|    0.0064|   24.9272|  0.0000|   0.1475|    0.1727|
|field_nameEngineering             |  -0.0280|    0.0059|   -4.7763|  0.0000|  -0.0395|   -0.0165|
|field_nameHealth                  |  -0.1105|    0.0060|  -18.4401|  0.0000|  -0.1223|   -0.0988|
|field_nameHumanities              |   0.0656|    0.0066|    9.9535|  0.0000|   0.0526|    0.0785|
|field_nameNo Specialization       |  -0.0346|    0.0075|   -4.5938|  0.0000|  -0.0494|   -0.0198|
|field_nameOther/Interdisciplinary |   0.0166|    0.0057|    2.9181|  0.0035|   0.0054|    0.0277|
|field_namePhysical Sciences       |  -0.0461|    0.0069|   -6.7270|  0.0000|  -0.0595|   -0.0327|
|field_nameServices                |   0.0872|    0.0065|   13.4013|  0.0000|   0.0744|    0.0999|
|field_nameSocial Sciences & Law   |   0.0848|    0.0061|   13.9837|  0.0000|   0.0729|    0.0967|
|gender2                           |   0.0937|    0.0013|   71.4708|  0.0000|   0.0911|    0.0962|
|immigrant2                        |  -0.0416|    0.0014|  -29.5744|  0.0000|  -0.0444|   -0.0389|
|immigrant3                        |  -0.0515|    0.0041|  -12.6332|  0.0000|  -0.0595|   -0.0435|
|immigrant88                       |  -0.1618|    0.0163|   -9.9255|  0.0000|  -0.1938|   -0.1299|
|weeks                             |  -0.0934|    0.0003| -358.1513|  0.0000|  -0.0939|   -0.0929|
|age7                              |   0.0345|    0.0059|    5.8417|  0.0000|   0.0229|    0.0461|
|age8                              |   0.0365|    0.0050|    7.3522|  0.0000|   0.0268|    0.0462|
|age9                              |   0.0719|    0.0050|   14.4852|  0.0000|   0.0621|    0.0816|
|age10                             |   0.0860|    0.0049|   17.3842|  0.0000|   0.0763|    0.0957|
|age11                             |   0.1031|    0.0049|   20.8422|  0.0000|   0.0934|    0.1128|
|age12                             |   0.1255|    0.0050|   25.2650|  0.0000|   0.1158|    0.1353|
|age13                             |   0.1305|    0.0050|   26.1584|  0.0000|   0.1207|    0.1403|
|age14                             |   0.1207|    0.0050|   24.2919|  0.0000|   0.1110|    0.1304|
|age15                             |   0.0902|    0.0049|   18.3743|  0.0000|   0.0806|    0.0998|
|age16                             |   0.0090|    0.0049|    1.8313|  0.0671|  -0.0006|    0.0187|
|age17                             |  -0.1116|    0.0050|  -22.2606|  0.0000|  -0.1214|   -0.1018|
|age18                             |  -0.1778|    0.0051|  -34.5372|  0.0000|  -0.1879|   -0.1677|
|age19                             |  -0.2068|    0.0054|  -38.0204|  0.0000|  -0.2175|   -0.1961|
|age20                             |  -0.2206|    0.0059|  -37.1752|  0.0000|  -0.2322|   -0.2089|
|age21                             |  -0.2220|    0.0062|  -35.9305|  0.0000|  -0.2341|   -0.2099|
|age88                             |  -0.0748|    0.0100|   -7.4854|  0.0000|  -0.0943|   -0.0552|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   0.9847|    0.0089|  110.6307|  0.0000|   0.9673|    1.0022|
|field_nameArts & Communications   |   0.0709|    0.0070|   10.0734|  0.0000|   0.0571|    0.0847|
|field_nameBusiness                |   0.0603|    0.0058|   10.3214|  0.0000|   0.0488|    0.0718|
|field_nameComputer Science & Math |  -0.2136|    0.0068|  -31.5706|  0.0000|  -0.2269|   -0.2003|
|field_nameEducation               |   0.1608|    0.0064|   25.0547|  0.0000|   0.1482|    0.1734|
|field_nameEngineering             |  -0.0270|    0.0059|   -4.5996|  0.0000|  -0.0385|   -0.0155|
|field_nameHealth                  |  -0.1095|    0.0060|  -18.2826|  0.0000|  -0.1213|   -0.0978|
|field_nameHumanities              |   0.0659|    0.0066|   10.0037|  0.0000|   0.0530|    0.0788|
|field_nameNo Specialization       |  -0.0273|    0.0075|   -3.6148|  0.0003|  -0.0420|   -0.0125|
|field_nameOther/Interdisciplinary |   0.0180|    0.0057|    3.1674|  0.0015|   0.0068|    0.0291|
|field_namePhysical Sciences       |  -0.0454|    0.0068|   -6.6229|  0.0000|  -0.0588|   -0.0319|
|field_nameServices                |   0.0884|    0.0065|   13.5825|  0.0000|   0.0756|    0.1011|
|field_nameSocial Sciences & Law   |   0.0855|    0.0061|   14.1036|  0.0000|   0.0737|    0.0974|
|gender2                           |   0.0936|    0.0013|   71.4297|  0.0000|   0.0910|    0.0961|
|immigrant2                        |  -0.0432|    0.0014|  -29.9531|  0.0000|  -0.0460|   -0.0404|
|immigrant3                        |  -0.0529|    0.0041|  -12.9783|  0.0000|  -0.0609|   -0.0449|
|immigrant88                       |  -0.1568|    0.0163|   -9.6213|  0.0000|  -0.1888|   -0.1249|
|weeks                             |  -0.0934|    0.0003| -358.1020|  0.0000|  -0.0939|   -0.0929|
|age7                              |   0.0349|    0.0059|    5.9092|  0.0000|   0.0233|    0.0465|
|age8                              |   0.0372|    0.0050|    7.4874|  0.0000|   0.0274|    0.0469|
|age9                              |   0.0725|    0.0050|   14.6209|  0.0000|   0.0628|    0.0822|
|age10                             |   0.0868|    0.0049|   17.5492|  0.0000|   0.0771|    0.0965|
|age11                             |   0.1037|    0.0049|   20.9722|  0.0000|   0.0941|    0.1134|
|age12                             |   0.1262|    0.0050|   25.4113|  0.0000|   0.1165|    0.1360|
|age13                             |   0.1316|    0.0050|   26.3713|  0.0000|   0.1218|    0.1413|
|age14                             |   0.1218|    0.0050|   24.5186|  0.0000|   0.1121|    0.1315|
|age15                             |   0.0912|    0.0049|   18.5715|  0.0000|   0.0815|    0.1008|
|age16                             |   0.0099|    0.0049|    2.0178|  0.0436|   0.0003|    0.0196|
|age17                             |  -0.1109|    0.0050|  -22.1243|  0.0000|  -0.1207|   -0.1011|
|age18                             |  -0.1771|    0.0051|  -34.4032|  0.0000|  -0.1872|   -0.1670|
|age19                             |  -0.2062|    0.0054|  -37.9225|  0.0000|  -0.2169|   -0.1956|
|age20                             |  -0.2200|    0.0059|  -37.0901|  0.0000|  -0.2316|   -0.2084|
|age21                             |  -0.2216|    0.0062|  -35.8749|  0.0000|  -0.2337|   -0.2095|
|age88                             |  -0.0668|    0.0100|   -6.6826|  0.0000|  -0.0864|   -0.0472|
|province11                        |   0.0058|    0.0110|    0.5265|  0.5986|  -0.0158|    0.0274|
|province12                        |   0.0197|    0.0063|    3.1480|  0.0016|   0.0075|    0.0320|
|province13                        |   0.0244|    0.0066|    3.7220|  0.0002|   0.0116|    0.0373|
|province24                        |   0.0447|    0.0052|    8.5450|  0.0000|   0.0344|    0.0550|
|province35                        |   0.0384|    0.0052|    7.3956|  0.0000|   0.0282|    0.0485|
|province46                        |   0.0420|    0.0060|    6.9659|  0.0000|   0.0302|    0.0539|
|province47                        |   0.0483|    0.0062|    7.7586|  0.0000|   0.0361|    0.0605|
|province48                        |   0.0405|    0.0054|    7.4936|  0.0000|   0.0299|    0.0511|
|province59                        |   0.0471|    0.0053|    8.8216|  0.0000|   0.0367|    0.0576|
|province70                        |  -0.1296|    0.0127|  -10.1843|  0.0000|  -0.1546|   -0.1047|


|Model             | R_squared| Adj_R_squared|      N|
|:-----------------|---------:|-------------:|------:|
|M1: Field         |    0.0223|        0.0223| 392626|
|M2: +Demographics |    0.0394|        0.0394| 392626|
|M3: +Work         |    0.3744|        0.3744| 392626|
|M4: +Age          |    0.4159|        0.4158| 392626|
|M5: +Province     |    0.4164|        0.4164| 392626|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   5.9452|    0.0883|   67.2983|   0e+00|   5.7720|    6.1183|
|field_nameArts & Communications   |  -1.1112|    0.1115|   -9.9658|   0e+00|  -1.3297|   -0.8926|
|field_nameBusiness                |   1.1420|    0.0924|   12.3551|   0e+00|   0.9609|    1.3232|
|field_nameComputer Science & Math |   1.5315|    0.1069|   14.3249|   0e+00|   1.3220|    1.7411|
|field_nameEducation               |   0.4081|    0.1014|    4.0247|   1e-04|   0.2094|    0.6068|
|field_nameEngineering             |   1.2060|    0.0927|   13.0105|   0e+00|   1.0243|    1.3877|
|field_nameHealth                  |   0.4828|    0.0946|    5.1047|   0e+00|   0.2974|    0.6682|
|field_nameHumanities              |  -0.3809|    0.1042|   -3.6554|   3e-04|  -0.5851|   -0.1767|
|field_nameNo Specialization       |  -0.7038|    0.1190|   -5.9121|   0e+00|  -0.9371|   -0.4705|
|field_nameOther/Interdisciplinary |  -2.1342|    0.0896|  -23.8201|   0e+00|  -2.3098|   -1.9586|
|field_namePhysical Sciences       |   0.9238|    0.1084|    8.5234|   0e+00|   0.7114|    1.1362|
|field_nameServices                |  -0.7742|    0.1031|   -7.5113|   0e+00|  -0.9762|   -0.5722|
|field_nameSocial Sciences & Law   |   0.8232|    0.0959|    8.5815|   0e+00|   0.6352|    1.0112|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   5.0814|    0.0881|   57.6702|  0.0000|   4.9087|    5.2541|
|field_nameArts & Communications   |  -0.7534|    0.1101|   -6.8409|  0.0000|  -0.9692|   -0.5375|
|field_nameBusiness                |   1.6324|    0.0914|   17.8600|  0.0000|   1.4532|    1.8115|
|field_nameComputer Science & Math |   1.7040|    0.1058|   16.1040|  0.0000|   1.4966|    1.9114|
|field_nameEducation               |   1.0429|    0.1004|   10.3906|  0.0000|   0.8462|    1.2396|
|field_nameEngineering             |   0.7675|    0.0918|    8.3617|  0.0000|   0.5876|    0.9474|
|field_nameHealth                  |   1.2466|    0.0937|   13.2990|  0.0000|   1.0629|    1.4303|
|field_nameHumanities              |   0.1175|    0.1030|    1.1410|  0.2539|  -0.0844|    0.3194|
|field_nameNo Specialization       |  -0.2691|    0.1177|   -2.2860|  0.0223|  -0.4998|   -0.0384|
|field_nameOther/Interdisciplinary |  -1.9564|    0.0885|  -22.1127|  0.0000|  -2.1298|   -1.7830|
|field_namePhysical Sciences       |   1.2985|    0.1071|   12.1225|  0.0000|   1.0886|    1.5085|
|field_nameServices                |  -0.6579|    0.1018|   -6.4655|  0.0000|  -0.8574|   -0.4585|
|field_nameSocial Sciences & Law   |   1.3461|    0.0949|   14.1907|  0.0000|   1.1602|    1.5320|
|gender2                           |   1.7577|    0.0205|   85.8743|  0.0000|   1.7176|    1.7978|
|immigrant2                        |  -0.6577|    0.0218|  -30.1230|  0.0000|  -0.7005|   -0.6149|
|immigrant3                        |  -2.9454|    0.0627|  -46.9920|  0.0000|  -3.0683|   -2.8226|
|immigrant88                       |  -0.2182|    0.2548|   -0.8565|  0.3917|  -0.7176|    0.2811|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   5.1307|    0.0907|   56.5890|  0.0000|   4.9530|    5.3084|
|field_nameArts & Communications   |  -0.7570|    0.1101|   -6.8727|  0.0000|  -0.9728|   -0.5411|
|field_nameBusiness                |   1.6322|    0.0914|   17.8578|  0.0000|   1.4530|    1.8113|
|field_nameComputer Science & Math |   1.7045|    0.1058|   16.1081|  0.0000|   1.4971|    1.9118|
|field_nameEducation               |   1.0465|    0.1004|   10.4260|  0.0000|   0.8498|    1.2433|
|field_nameEngineering             |   0.7688|    0.0918|    8.3755|  0.0000|   0.5889|    0.9487|
|field_nameHealth                  |   1.2459|    0.0937|   13.2908|  0.0000|   1.0621|    1.4296|
|field_nameHumanities              |   0.1177|    0.1030|    1.1423|  0.2533|  -0.0842|    0.3196|
|field_nameNo Specialization       |  -0.2747|    0.1177|   -2.3332|  0.0196|  -0.5055|   -0.0440|
|field_nameOther/Interdisciplinary |  -1.9531|    0.0885|  -22.0728|  0.0000|  -2.1266|   -1.7797|
|field_namePhysical Sciences       |   1.2971|    0.1071|   12.1092|  0.0000|   1.0872|    1.5071|
|field_nameServices                |  -0.6600|    0.1018|   -6.4853|  0.0000|  -0.8594|   -0.4605|
|field_nameSocial Sciences & Law   |   1.3442|    0.0949|   14.1710|  0.0000|   1.1583|    1.5302|
|gender2                           |   1.7555|    0.0205|   85.6740|  0.0000|   1.7153|    1.7956|
|immigrant2                        |  -0.6570|    0.0218|  -30.0874|  0.0000|  -0.6998|   -0.6142|
|immigrant3                        |  -2.9541|    0.0628|  -47.0460|  0.0000|  -3.0771|   -2.8310|
|immigrant88                       |  -0.2253|    0.2548|   -0.8843|  0.3765|  -0.7248|    0.2741|
|weeks                             |  -0.0084|    0.0036|   -2.3059|  0.0211|  -0.0155|   -0.0013|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   1.2401|    0.1112|   11.1502|  0.0000|   1.0222|    1.4581|
|field_nameArts & Communications   |  -0.6668|    0.1073|   -6.2133|  0.0000|  -0.8771|   -0.4565|
|field_nameBusiness                |   1.5799|    0.0890|   17.7416|  0.0000|   1.4053|    1.7544|
|field_nameComputer Science & Math |   1.6033|    0.1031|   15.5490|  0.0000|   1.4012|    1.8055|
|field_nameEducation               |   1.0264|    0.0979|   10.4884|  0.0000|   0.8346|    1.2182|
|field_nameEngineering             |   0.7955|    0.0894|    8.8947|  0.0000|   0.6202|    0.9708|
|field_nameHealth                  |   1.2999|    0.0913|   14.2326|  0.0000|   1.1209|    1.4789|
|field_nameHumanities              |   0.2384|    0.1004|    2.3754|  0.0175|   0.0417|    0.4351|
|field_nameNo Specialization       |  -0.0634|    0.1148|   -0.5520|  0.5810|  -0.2883|    0.1616|
|field_nameOther/Interdisciplinary |  -1.2765|    0.0864|  -14.7677|  0.0000|  -1.4459|   -1.1071|
|field_namePhysical Sciences       |   1.5997|    0.1044|   15.3220|  0.0000|   1.3950|    1.8043|
|field_nameServices                |  -0.6216|    0.0992|   -6.2695|  0.0000|  -0.8160|   -0.4273|
|field_nameSocial Sciences & Law   |   1.3848|    0.0924|   14.9824|  0.0000|   1.2037|    1.5660|
|gender2                           |   1.7526|    0.0200|   87.7675|  0.0000|   1.7135|    1.7918|
|immigrant2                        |  -0.9404|    0.0214|  -43.8481|  0.0000|  -0.9824|   -0.8984|
|immigrant3                        |  -2.0649|    0.0621|  -33.2600|  0.0000|  -2.1866|   -1.9432|
|immigrant88                       |  -0.5084|    0.2484|   -2.0462|  0.0407|  -0.9953|   -0.0214|
|weeks                             |  -0.0172|    0.0040|   -4.3377|  0.0000|  -0.0250|   -0.0095|
|age7                              |   0.6086|    0.0900|    6.7623|  0.0000|   0.4322|    0.7850|
|age8                              |   1.1499|    0.0757|   15.1956|  0.0000|   1.0016|    1.2983|
|age9                              |   2.4438|    0.0756|   32.3268|  0.0000|   2.2957|    2.5920|
|age10                             |   3.6730|    0.0754|   48.7273|  0.0000|   3.5252|    3.8207|
|age11                             |   4.5547|    0.0754|   60.4198|  0.0000|   4.4069|    4.7024|
|age12                             |   5.1577|    0.0757|   68.1222|  0.0000|   5.0093|    5.3061|
|age13                             |   5.3628|    0.0760|   70.5343|  0.0000|   5.2138|    5.5119|
|age14                             |   5.3045|    0.0757|   70.0604|  0.0000|   5.1561|    5.4529|
|age15                             |   4.7797|    0.0748|   63.8830|  0.0000|   4.6330|    4.9263|
|age16                             |   4.0478|    0.0750|   53.9817|  0.0000|   3.9008|    4.1947|
|age17                             |   3.4513|    0.0764|   45.1771|  0.0000|   3.3016|    3.6010|
|age18                             |   2.9663|    0.0785|   37.8094|  0.0000|   2.8126|    3.1201|
|age19                             |   2.8469|    0.0829|   34.3477|  0.0000|   2.6845|    3.0094|
|age20                             |   2.7681|    0.0904|   30.6162|  0.0000|   2.5909|    2.9453|
|age21                             |   3.1449|    0.0942|   33.4000|  0.0000|   2.9603|    3.3294|
|age88                             |   3.5470|    0.1522|   23.3081|  0.0000|   3.2487|    3.8453|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   0.4480|    0.1353|    3.3099|  0.0009|   0.1827|    0.7133|
|field_nameArts & Communications   |  -0.6638|    0.1071|   -6.1994|  0.0000|  -0.8737|   -0.4539|
|field_nameBusiness                |   1.6126|    0.0888|   18.1524|  0.0000|   1.4385|    1.7867|
|field_nameComputer Science & Math |   1.6301|    0.1029|   15.8451|  0.0000|   1.4285|    1.8317|
|field_nameEducation               |   1.0569|    0.0976|   10.8283|  0.0000|   0.8656|    1.2482|
|field_nameEngineering             |   0.8157|    0.0892|    9.1431|  0.0000|   0.6409|    0.9906|
|field_nameHealth                  |   1.3023|    0.0911|   14.2946|  0.0000|   1.1238|    1.4809|
|field_nameHumanities              |   0.2547|    0.1001|    2.5432|  0.0110|   0.0584|    0.4509|
|field_nameNo Specialization       |  -0.0122|    0.1147|   -0.1060|  0.9156|  -0.2369|    0.2126|
|field_nameOther/Interdisciplinary |  -1.2758|    0.0862|  -14.7961|  0.0000|  -1.4448|   -1.1068|
|field_namePhysical Sciences       |   1.5975|    0.1041|   15.3385|  0.0000|   1.3933|    1.8016|
|field_nameServices                |  -0.5549|    0.0989|   -5.6092|  0.0000|  -0.7487|   -0.3610|
|field_nameSocial Sciences & Law   |   1.3616|    0.0922|   14.7618|  0.0000|   1.1808|    1.5424|
|gender2                           |   1.7520|    0.0199|   87.9623|  0.0000|   1.7130|    1.7910|
|immigrant2                        |  -1.1258|    0.0219|  -51.3456|  0.0000|  -1.1688|   -1.0829|
|immigrant3                        |  -2.1073|    0.0620|  -33.9878|  0.0000|  -2.2288|   -1.9858|
|immigrant88                       |  -0.5034|    0.2479|   -2.0311|  0.0422|  -0.9892|   -0.0176|
|weeks                             |  -0.0170|    0.0040|   -4.2796|  0.0000|  -0.0247|   -0.0092|
|age7                              |   0.5600|    0.0898|    6.2377|  0.0000|   0.3840|    0.7359|
|age8                              |   1.0925|    0.0755|   14.4691|  0.0000|   0.9445|    1.2405|
|age9                              |   2.3928|    0.0754|   31.7235|  0.0000|   2.2449|    2.5406|
|age10                             |   3.6261|    0.0752|   48.2114|  0.0000|   3.4787|    3.7736|
|age11                             |   4.5184|    0.0752|   60.0683|  0.0000|   4.3710|    4.6659|
|age12                             |   5.1438|    0.0755|   68.0924|  0.0000|   4.9957|    5.2918|
|age13                             |   5.3465|    0.0759|   70.4791|  0.0000|   5.1978|    5.4951|
|age14                             |   5.2898|    0.0755|   70.0244|  0.0000|   5.1417|    5.4378|
|age15                             |   4.7734|    0.0746|   63.9524|  0.0000|   4.6271|    4.9197|
|age16                             |   4.0497|    0.0748|   54.1353|  0.0000|   3.9031|    4.1963|
|age17                             |   3.4600|    0.0762|   45.3973|  0.0000|   3.3106|    3.6094|
|age18                             |   2.9933|    0.0783|   38.2419|  0.0000|   2.8399|    3.1467|
|age19                             |   2.8745|    0.0827|   34.7646|  0.0000|   2.7125|    3.0366|
|age20                             |   2.7949|    0.0902|   30.9876|  0.0000|   2.6181|    2.9716|
|age21                             |   3.1515|    0.0939|   33.5522|  0.0000|   2.9674|    3.3356|
|age88                             |   3.5742|    0.1520|   23.5133|  0.0000|   3.2763|    3.8721|
|province11                        |  -0.0855|    0.1678|   -0.5097|  0.6103|  -0.4145|    0.2434|
|province12                        |  -0.0670|    0.0954|   -0.7021|  0.4826|  -0.2539|    0.1200|
|province13                        |  -0.0902|    0.0998|   -0.9039|  0.3660|  -0.2859|    0.1054|
|province24                        |   0.3500|    0.0795|    4.4001|  0.0000|   0.1941|    0.5059|
|province35                        |   1.1279|    0.0789|   14.3003|  0.0000|   0.9733|    1.2825|
|province46                        |   0.5418|    0.0918|    5.9043|  0.0000|   0.3619|    0.7216|
|province47                        |   0.7142|    0.0947|    7.5449|  0.0000|   0.5287|    0.8997|
|province48                        |   1.3941|    0.0822|   16.9592|  0.0000|   1.2330|    1.5553|
|province59                        |   0.9656|    0.0813|   11.8813|  0.0000|   0.8063|    1.1249|
|province70                        |   1.9281|    0.1935|    9.9624|  0.0000|   1.5488|    2.3075|


|Model             | R_squared| Adj_R_squared|      N|
|:-----------------|---------:|-------------:|------:|
|M1: Field         |    0.0565|        0.0565| 392626|
|M2: +Demographics |    0.0806|        0.0805| 392626|
|M3: +Work         |    0.0806|        0.0805| 392626|
|M4: +Age          |    0.1273|        0.1273| 392626|
|M5: +Province     |    0.1319|        0.1318| 392626|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |  10.6636|    0.0186|  573.1865|  0.0000|  10.6271|   10.7001|
|field_nameArts & Communications   |  -0.2342|    0.0235|   -9.9730|  0.0000|  -0.2802|   -0.1882|
|field_nameBusiness                |   0.0750|    0.0195|    3.8523|  0.0001|   0.0368|    0.1131|
|field_nameComputer Science & Math |   0.1375|    0.0225|    6.1068|  0.0000|   0.0934|    0.1816|
|field_nameEducation               |   0.1526|    0.0214|    7.1461|  0.0000|   0.1107|    0.1945|
|field_nameEngineering             |   0.1563|    0.0195|    8.0052|  0.0000|   0.1180|    0.1945|
|field_nameHealth                  |   0.0660|    0.0199|    3.3132|  0.0009|   0.0270|    0.1050|
|field_nameHumanities              |  -0.1386|    0.0219|   -6.3179|  0.0000|  -0.1817|   -0.0956|
|field_nameNo Specialization       |  -0.1654|    0.0251|   -6.5988|  0.0000|  -0.2146|   -0.1163|
|field_nameOther/Interdisciplinary |  -0.5895|    0.0189|  -31.2409|  0.0000|  -0.6265|   -0.5525|
|field_namePhysical Sciences       |   0.0076|    0.0228|    0.3336|  0.7386|  -0.0371|    0.0524|
|field_nameServices                |  -0.1269|    0.0217|   -5.8446|  0.0000|  -0.1694|   -0.0843|
|field_nameSocial Sciences & Law   |   0.0211|    0.0202|    1.0425|  0.2972|  -0.0185|    0.0607|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |  10.5459|    0.0186|  568.2784|  0.0000|  10.5095|   10.5822|
|field_nameArts & Communications   |  -0.1686|    0.0232|   -7.2669|  0.0000|  -0.2140|   -0.1231|
|field_nameBusiness                |   0.1694|    0.0192|    8.8001|  0.0000|   0.1317|    0.2071|
|field_nameComputer Science & Math |   0.2080|    0.0223|    9.3312|  0.0000|   0.1643|    0.2516|
|field_nameEducation               |   0.2495|    0.0211|   11.8041|  0.0000|   0.2081|    0.2910|
|field_nameEngineering             |   0.1018|    0.0193|    5.2674|  0.0000|   0.0639|    0.1397|
|field_nameHealth                  |   0.1894|    0.0197|    9.5915|  0.0000|   0.1507|    0.2281|
|field_nameHumanities              |  -0.0477|    0.0217|   -2.1998|  0.0278|  -0.0902|   -0.0052|
|field_nameNo Specialization       |  -0.0696|    0.0248|   -2.8074|  0.0050|  -0.1182|   -0.0210|
|field_nameOther/Interdisciplinary |  -0.5597|    0.0186|  -30.0362|  0.0000|  -0.5962|   -0.5232|
|field_namePhysical Sciences       |   0.0873|    0.0226|    3.8712|  0.0001|   0.0431|    0.1316|
|field_nameServices                |  -0.1104|    0.0214|   -5.1494|  0.0000|  -0.1524|   -0.0684|
|field_nameSocial Sciences & Law   |   0.1102|    0.0200|    5.5162|  0.0000|   0.0710|    0.1494|
|gender2                           |   0.2722|    0.0043|   63.1447|  0.0000|   0.2638|    0.2807|
|immigrant2                        |  -0.1449|    0.0046|  -31.5088|  0.0000|  -0.1539|   -0.1359|
|immigrant3                        |  -0.9911|    0.0132|  -75.0778|  0.0000|  -1.0170|   -0.9652|
|immigrant88                       |  -0.1864|    0.0537|   -3.4742|  0.0005|  -0.2916|   -0.0813|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |  10.6466|    0.0191|  557.8971|  0.0000|  10.6092|   10.6840|
|field_nameArts & Communications   |  -0.1759|    0.0232|   -7.5855|  0.0000|  -0.2213|   -0.1304|
|field_nameBusiness                |   0.1690|    0.0192|    8.7834|  0.0000|   0.1313|    0.2067|
|field_nameComputer Science & Math |   0.2088|    0.0223|    9.3765|  0.0000|   0.1652|    0.2525|
|field_nameEducation               |   0.2571|    0.0211|   12.1663|  0.0000|   0.2156|    0.2985|
|field_nameEngineering             |   0.1044|    0.0193|    5.4050|  0.0000|   0.0666|    0.1423|
|field_nameHealth                  |   0.1878|    0.0197|    9.5174|  0.0000|   0.1491|    0.2265|
|field_nameHumanities              |  -0.0474|    0.0217|   -2.1884|  0.0286|  -0.0899|   -0.0050|
|field_nameNo Specialization       |  -0.0811|    0.0248|   -3.2726|  0.0011|  -0.1297|   -0.0325|
|field_nameOther/Interdisciplinary |  -0.5530|    0.0186|  -29.6905|  0.0000|  -0.5895|   -0.5165|
|field_namePhysical Sciences       |   0.0845|    0.0225|    3.7458|  0.0002|   0.0403|    0.1286|
|field_nameServices                |  -0.1145|    0.0214|   -5.3467|  0.0000|  -0.1565|   -0.0725|
|field_nameSocial Sciences & Law   |   0.1065|    0.0200|    5.3321|  0.0000|   0.0673|    0.1456|
|gender2                           |   0.2677|    0.0043|   62.0723|  0.0000|   0.2593|    0.2762|
|immigrant2                        |  -0.1434|    0.0046|  -31.2080|  0.0000|  -0.1524|   -0.1344|
|immigrant3                        |  -1.0088|    0.0132|  -76.3320|  0.0000|  -1.0347|   -0.9829|
|immigrant88                       |  -0.2009|    0.0536|   -3.7465|  0.0002|  -0.3061|   -0.0958|
|weeks                             |  -0.0171|    0.0008|  -22.3999|  0.0000|  -0.0186|   -0.0156|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   8.1211|    0.0224|  362.5335|  0.0000|   8.0772|    8.1650|
|field_nameArts & Communications   |  -0.1702|    0.0216|   -7.8742|  0.0000|  -0.2126|   -0.1278|
|field_nameBusiness                |   0.1654|    0.0179|    9.2220|  0.0000|   0.1302|    0.2006|
|field_nameComputer Science & Math |   0.2104|    0.0208|   10.1321|  0.0000|   0.1697|    0.2511|
|field_nameEducation               |   0.2365|    0.0197|   11.9982|  0.0000|   0.1978|    0.2751|
|field_nameEngineering             |   0.1120|    0.0180|    6.2193|  0.0000|   0.0767|    0.1473|
|field_nameHealth                  |   0.1916|    0.0184|   10.4154|  0.0000|   0.1555|    0.2276|
|field_nameHumanities              |  -0.0194|    0.0202|   -0.9612|  0.3364|  -0.0591|    0.0202|
|field_nameNo Specialization       |  -0.0267|    0.0231|   -1.1560|  0.2477|  -0.0720|    0.0186|
|field_nameOther/Interdisciplinary |  -0.2952|    0.0174|  -16.9586|  0.0000|  -0.3294|   -0.2611|
|field_namePhysical Sciences       |   0.1546|    0.0210|    7.3520|  0.0000|   0.1134|    0.1958|
|field_nameServices                |  -0.1073|    0.0200|   -5.3715|  0.0000|  -0.1464|   -0.0681|
|field_nameSocial Sciences & Law   |   0.1110|    0.0186|    5.9618|  0.0000|   0.0745|    0.1475|
|gender2                           |   0.2656|    0.0040|   66.0509|  0.0000|   0.2578|    0.2735|
|immigrant2                        |  -0.2434|    0.0043|  -56.3473|  0.0000|  -0.2519|   -0.2349|
|immigrant3                        |  -0.8770|    0.0125|  -70.1354|  0.0000|  -0.9015|   -0.8525|
|immigrant88                       |  -0.2648|    0.0500|   -5.2916|  0.0000|  -0.3629|   -0.1667|
|weeks                             |  -0.0444|    0.0008|  -55.4612|  0.0000|  -0.0460|   -0.0428|
|age7                              |   1.2648|    0.0181|   69.7832|  0.0000|   1.2293|    1.3004|
|age8                              |   2.0183|    0.0152|  132.4171|  0.0000|   1.9884|    2.0481|
|age9                              |   2.5037|    0.0152|  164.4374|  0.0000|   2.4739|    2.5336|
|age10                             |   2.7308|    0.0152|  179.8750|  0.0000|   2.7010|    2.7606|
|age11                             |   2.8546|    0.0152|  188.0165|  0.0000|   2.8249|    2.8844|
|age12                             |   2.9194|    0.0152|  191.4502|  0.0000|   2.8895|    2.9493|
|age13                             |   2.9013|    0.0153|  189.4620|  0.0000|   2.8713|    2.9313|
|age14                             |   2.8473|    0.0152|  186.7187|  0.0000|   2.8174|    2.8772|
|age15                             |   2.7091|    0.0151|  179.7810|  0.0000|   2.6796|    2.7387|
|age16                             |   2.5875|    0.0151|  171.3310|  0.0000|   2.5579|    2.6171|
|age17                             |   2.6942|    0.0154|  175.0999|  0.0000|   2.6640|    2.7243|
|age18                             |   2.6917|    0.0158|  170.3483|  0.0000|   2.6608|    2.7227|
|age19                             |   2.6899|    0.0167|  161.1316|  0.0000|   2.6572|    2.7226|
|age20                             |   2.6975|    0.0182|  148.1341|  0.0000|   2.6618|    2.7332|
|age21                             |   2.7794|    0.0190|  146.5592|  0.0000|   2.7422|    2.8165|
|age88                             |   2.5127|    0.0306|   81.9809|  0.0000|   2.4526|    2.5728|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   7.9832|    0.0273|  292.3071|  0.0000|   7.9297|    8.0368|
|field_nameArts & Communications   |  -0.1712|    0.0216|   -7.9245|  0.0000|  -0.2136|   -0.1289|
|field_nameBusiness                |   0.1674|    0.0179|    9.3367|  0.0000|   0.1322|    0.2025|
|field_nameComputer Science & Math |   0.2114|    0.0208|   10.1824|  0.0000|   0.1707|    0.2521|
|field_nameEducation               |   0.2404|    0.0197|   12.2059|  0.0000|   0.2018|    0.2790|
|field_nameEngineering             |   0.1136|    0.0180|    6.3101|  0.0000|   0.0783|    0.1489|
|field_nameHealth                  |   0.1938|    0.0184|   10.5431|  0.0000|   0.1578|    0.2299|
|field_nameHumanities              |  -0.0183|    0.0202|   -0.9075|  0.3641|  -0.0579|    0.0213|
|field_nameNo Specialization       |  -0.0124|    0.0231|   -0.5349|  0.5927|  -0.0577|    0.0330|
|field_nameOther/Interdisciplinary |  -0.2923|    0.0174|  -16.8018|  0.0000|  -0.3264|   -0.2582|
|field_namePhysical Sciences       |   0.1545|    0.0210|    7.3504|  0.0000|   0.1133|    0.1957|
|field_nameServices                |  -0.1029|    0.0200|   -5.1544|  0.0000|  -0.1420|   -0.0638|
|field_nameSocial Sciences & Law   |   0.1092|    0.0186|    5.8686|  0.0000|   0.0727|    0.1457|
|gender2                           |   0.2656|    0.0040|   66.0770|  0.0000|   0.2577|    0.2734|
|immigrant2                        |  -0.2567|    0.0044|  -58.0197|  0.0000|  -0.2654|   -0.2480|
|immigrant3                        |  -0.8771|    0.0125|  -70.1051|  0.0000|  -0.9016|   -0.8526|
|immigrant88                       |  -0.2547|    0.0500|   -5.0929|  0.0000|  -0.3527|   -0.1567|
|weeks                             |  -0.0444|    0.0008|  -55.4629|  0.0000|  -0.0460|   -0.0428|
|age7                              |   1.2616|    0.0181|   69.6465|  0.0000|   1.2261|    1.2972|
|age8                              |   2.0159|    0.0152|  132.3048|  0.0000|   1.9860|    2.0457|
|age9                              |   2.5021|    0.0152|  164.3992|  0.0000|   2.4723|    2.5319|
|age10                             |   2.7299|    0.0152|  179.8711|  0.0000|   2.7001|    2.7596|
|age11                             |   2.8544|    0.0152|  188.0566|  0.0000|   2.8247|    2.8842|
|age12                             |   2.9200|    0.0152|  191.5651|  0.0000|   2.8902|    2.9499|
|age13                             |   2.9025|    0.0153|  189.6157|  0.0000|   2.8725|    2.9325|
|age14                             |   2.8491|    0.0152|  186.9089|  0.0000|   2.8192|    2.8790|
|age15                             |   2.7106|    0.0151|  179.9701|  0.0000|   2.6811|    2.7401|
|age16                             |   2.5899|    0.0151|  171.5732|  0.0000|   2.5603|    2.6195|
|age17                             |   2.6977|    0.0154|  175.4123|  0.0000|   2.6675|    2.7278|
|age18                             |   2.6966|    0.0158|  170.7324|  0.0000|   2.6656|    2.7275|
|age19                             |   2.6941|    0.0167|  161.4733|  0.0000|   2.6614|    2.7268|
|age20                             |   2.7018|    0.0182|  148.4561|  0.0000|   2.6662|    2.7375|
|age21                             |   2.7824|    0.0190|  146.8029|  0.0000|   2.7453|    2.8195|
|age88                             |   2.5272|    0.0307|   82.3921|  0.0000|   2.4671|    2.5873|
|province11                        |   0.1117|    0.0339|    3.2978|  0.0010|   0.0453|    0.1780|
|province12                        |  -0.0027|    0.0192|   -0.1378|  0.8904|  -0.0404|    0.0351|
|province13                        |   0.0278|    0.0201|    1.3799|  0.1676|  -0.0117|    0.0673|
|province24                        |   0.1354|    0.0161|    8.4346|  0.0000|   0.1039|    0.1668|
|province35                        |   0.1684|    0.0159|   10.5782|  0.0000|   0.1372|    0.1995|
|province46                        |   0.0646|    0.0185|    3.4879|  0.0005|   0.0283|    0.1009|
|province47                        |   0.1283|    0.0191|    6.7151|  0.0000|   0.0908|    0.1657|
|province48                        |   0.1881|    0.0166|   11.3416|  0.0000|   0.1556|    0.2206|
|province59                        |   0.0977|    0.0164|    5.9566|  0.0000|   0.0655|    0.1298|
|province70                        |   0.1464|    0.0391|    3.7487|  0.0002|   0.0699|    0.2229|


|Model             | R_squared| Adj_R_squared|      N|
|:-----------------|---------:|-------------:|------:|
|M1: Field         |    0.0613|        0.0613| 392626|
|M2: +Demographics |    0.0850|        0.0850| 392626|
|M3: +Work         |    0.0862|        0.0862| 392626|
|M4: +Age          |    0.2059|        0.2058| 392626|
|M5: +Province     |    0.2071|        0.2070| 392626|


|term                                      | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:-----------------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                               |   0.6904|    0.1674|    4.1248|  0.0000|   0.3623|    1.0184|
|field_nameArts & Communications           |  -0.5047|    0.1563|   -3.2291|  0.0012|  -0.8111|   -0.1984|
|field_nameBusiness                        |   0.7951|    0.1348|    5.8963|  0.0000|   0.5308|    1.0594|
|field_nameComputer Science & Math         |   1.3897|    0.1661|    8.3671|  0.0000|   1.0642|    1.7153|
|field_nameEducation                       |   0.9452|    0.1414|    6.6822|  0.0000|   0.6680|    1.2224|
|field_nameEngineering                     |   1.2659|    0.1563|    8.0992|  0.0000|   0.9596|    1.5723|
|field_nameHealth                          |   0.8106|    0.1354|    5.9857|  0.0000|   0.5452|    1.0761|
|field_nameHumanities                      |   0.2101|    0.1468|    1.4310|  0.1524|  -0.0777|    0.4979|
|field_nameNo Specialization               |   0.1655|    0.1674|    0.9888|  0.3228|  -0.1626|    0.4936|
|field_nameOther/Interdisciplinary         |  -1.1235|    0.1324|   -8.4825|  0.0000|  -1.3831|   -0.8639|
|field_namePhysical Sciences               |   1.2723|    0.1551|    8.2021|  0.0000|   0.9683|    1.5763|
|field_nameServices                        |  -1.1886|    0.1495|   -7.9491|  0.0000|  -1.4817|   -0.8955|
|field_nameSocial Sciences & Law           |   0.7303|    0.1377|    5.3033|  0.0000|   0.4604|    1.0002|
|gender2                                   |   1.3917|    0.1713|    8.1226|  0.0000|   1.0559|    1.7276|
|immigrant2                                |  -1.1624|    0.0219|  -53.0926|  0.0000|  -1.2054|   -1.1195|
|immigrant3                                |  -2.1674|    0.0619|  -35.0397|  0.0000|  -2.2886|   -2.0462|
|immigrant88                               |  -0.5296|    0.2471|   -2.1429|  0.0321|  -1.0140|   -0.0452|
|weeks                                     |  -0.0200|    0.0040|   -5.0484|  0.0000|  -0.0277|   -0.0122|
|age7                                      |   0.5578|    0.0895|    6.2312|  0.0000|   0.3823|    0.7332|
|age8                                      |   1.1112|    0.0753|   14.7572|  0.0000|   0.9636|    1.2588|
|age9                                      |   2.4024|    0.0752|   31.9411|  0.0000|   2.2550|    2.5499|
|age10                                     |   3.6365|    0.0750|   48.4864|  0.0000|   3.4895|    3.7835|
|age11                                     |   4.5342|    0.0750|   60.4491|  0.0000|   4.3872|    4.6812|
|age12                                     |   5.1631|    0.0753|   68.5443|  0.0000|   5.0155|    5.3108|
|age13                                     |   5.3681|    0.0756|   70.9693|  0.0000|   5.2199|    5.5164|
|age14                                     |   5.3062|    0.0753|   70.4469|  0.0000|   5.1586|    5.4539|
|age15                                     |   4.7939|    0.0744|   64.4133|  0.0000|   4.6481|    4.9398|
|age16                                     |   4.0528|    0.0746|   54.3344|  0.0000|   3.9066|    4.1990|
|age17                                     |   3.4548|    0.0760|   45.4590|  0.0000|   3.3059|    3.6038|
|age18                                     |   2.9802|    0.0781|   38.1821|  0.0000|   2.8272|    3.1332|
|age19                                     |   2.8551|    0.0825|   34.6256|  0.0000|   2.6935|    3.0168|
|age20                                     |   2.7616|    0.0899|   30.7016|  0.0000|   2.5853|    2.9379|
|age21                                     |   3.0944|    0.0937|   33.0296|  0.0000|   2.9107|    3.2780|
|age88                                     |   3.5633|    0.1516|   23.5096|  0.0000|   3.2663|    3.8604|
|province11                                |  -0.0718|    0.1673|   -0.4289|  0.6680|  -0.3997|    0.2562|
|province12                                |  -0.0650|    0.0951|   -0.6831|  0.4945|  -0.2513|    0.1214|
|province13                                |  -0.0841|    0.0996|   -0.8446|  0.3983|  -0.2792|    0.1110|
|province24                                |   0.3317|    0.0793|    4.1816|  0.0000|   0.1762|    0.4871|
|province35                                |   1.1013|    0.0787|   14.0026|  0.0000|   0.9472|    1.2555|
|province46                                |   0.5292|    0.0915|    5.7834|  0.0000|   0.3498|    0.7085|
|province47                                |   0.7258|    0.0944|    7.6892|  0.0000|   0.5408|    0.9107|
|province48                                |   1.3790|    0.0820|   16.8226|  0.0000|   1.2183|    1.5397|
|province59                                |   0.9456|    0.0810|   11.6684|  0.0000|   0.7868|    1.1044|
|province70                                |   1.9179|    0.1930|    9.9382|  0.0000|   1.5397|    2.2962|
|field_nameArts & Communications:gender2   |  -0.4956|    0.2160|   -2.2945|  0.0218|  -0.9190|   -0.0723|
|field_nameBusiness:gender2                |   1.9203|    0.1795|   10.7008|  0.0000|   1.5686|    2.2720|
|field_nameComputer Science & Math:gender2 |   0.4237|    0.2115|    2.0035|  0.0451|   0.0092|    0.8381|
|field_nameEducation:gender2               |  -0.0407|    0.2057|   -0.1981|  0.8430|  -0.4439|    0.3624|
|field_nameEngineering:gender2             |  -0.3631|    0.1936|   -1.8754|  0.0607|  -0.7426|    0.0164|
|field_nameHealth:gender2                  |   1.8916|    0.1903|    9.9401|  0.0000|   1.5186|    2.2646|
|field_nameHumanities:gender2              |  -0.0508|    0.2031|   -0.2501|  0.8025|  -0.4489|    0.3473|
|field_nameNo Specialization:gender2       |  -0.4663|    0.2297|   -2.0297|  0.0424|  -0.9166|   -0.0160|
|field_nameOther/Interdisciplinary:gender2 |  -0.3388|    0.1738|   -1.9497|  0.0512|  -0.6795|    0.0018|
|field_namePhysical Sciences:gender2       |   0.6194|    0.2092|    2.9603|  0.0031|   0.2093|    1.0295|
|field_nameServices:gender2                |   1.1849|    0.1992|    5.9479|  0.0000|   0.7944|    1.5753|
|field_nameSocial Sciences & Law:gender2   |   1.6500|    0.1874|    8.8041|  0.0000|   1.2827|    2.0173|


| Total_N| Mean_Income| Median_Income| SD_Income| Share_High_Skill| Share_Female| Share_Immigrant| Mean_Weeks_Worked|
|-------:|-----------:|-------------:|---------:|----------------:|------------:|---------------:|-----------------:|
| 392,626|   54,461.36|        41,000| 62,064.15|             0.55|         0.49|               1|               5.9|


|gender |       N| Mean_Income| Median_Income| Share_High_Skill|
|:------|-------:|-----------:|-------------:|----------------:|
|1      | 200,885|   46,699.31|        37,000|             0.49|
|2      | 191,741|   62,593.58|        46,000|             0.60|


|immigrant |       N| Mean_Income| Median_Income| Share_High_Skill|
|:---------|-------:|-----------:|-------------:|----------------:|
|1         | 279,338|   56,118.92|        43,000|             0.56|
|2         | 103,332|   51,850.66|        38,000|             0.50|
|3         |   9,408|   33,871.66|        26,000|             0.65|
|88        |     548|   55,295.99|        38,500|             0.51|


|province |       N| Mean_Income| Median_Income| Share_High_Skill|
|:--------|-------:|-----------:|-------------:|----------------:|
|10       |   5,633|   48,259.46|        37,000|             0.50|
|11       |   1,506|   46,247.45|        39,000|             0.52|
|12       |  10,609|   47,174.43|        38,000|             0.51|
|13       |   8,303|   46,245.09|        38,000|             0.52|
|24       |  90,545|   51,264.48|        41,000|             0.55|
|35       | 152,251|   56,388.10|        41,000|             0.54|
|46       |  13,647|   49,472.96|        39,000|             0.55|
|47       |  11,116|   53,143.18|        43,000|             0.57|
|48       |  42,919|   60,598.10|        45,000|             0.58|
|59       |  55,030|   54,425.07|        41,000|             0.55|
|70       |   1,067|   64,105.42|        52,000|             0.43|


|term                              | estimate| std.error| statistic| p.value| conf.low| conf.high|
|:---------------------------------|--------:|---------:|---------:|-------:|--------:|---------:|
|(Intercept)                       |   0.5940|    0.0095|   62.6987|  0.0000|   0.5754|    0.6126|
|field_nameArts & Communications   |  -0.1538|    0.0075|  -20.5240|  0.0000|  -0.1685|   -0.1391|
|field_nameBusiness                |  -0.0083|    0.0062|   -1.3361|  0.1815|  -0.0205|    0.0039|
|field_nameComputer Science & Math |  -0.1859|    0.0072|  -25.8109|  0.0000|  -0.2000|   -0.1718|
|field_nameEducation               |  -0.1698|    0.0068|  -24.8475|  0.0000|  -0.1832|   -0.1564|
|field_nameEngineering             |   0.0497|    0.0062|    7.9639|  0.0000|   0.0375|    0.0620|
|field_nameHealth                  |  -0.2091|    0.0064|  -32.7870|  0.0000|  -0.2216|   -0.1966|
|field_nameHumanities              |  -0.0974|    0.0070|  -13.8915|  0.0000|  -0.1111|   -0.0836|
|field_nameNo Specialization       |  -0.1063|    0.0080|  -13.2468|  0.0000|  -0.1221|   -0.0906|
|field_nameOther/Interdisciplinary |   0.0298|    0.0060|    4.9335|  0.0000|   0.0179|    0.0416|
|field_namePhysical Sciences       |  -0.1563|    0.0073|  -21.4441|  0.0000|  -0.1706|   -0.1420|
|field_nameServices                |  -0.0586|    0.0069|   -8.4590|  0.0000|  -0.0721|   -0.0450|
|field_nameSocial Sciences & Law   |  -0.1223|    0.0065|  -18.9396|  0.0000|  -0.1349|   -0.1096|
|gender2                           |   0.1705|    0.0014|  122.2603|  0.0000|   0.1677|    0.1732|
|immigrant2                        |  -0.0197|    0.0015|  -12.8112|  0.0000|  -0.0227|   -0.0167|
|immigrant3                        |  -0.0346|    0.0043|   -7.9658|  0.0000|  -0.0431|   -0.0261|
|immigrant88                       |  -0.0754|    0.0174|   -4.3454|  0.0000|  -0.1094|   -0.0414|
|weeks                             |  -0.0538|    0.0003| -193.8000|  0.0000|  -0.0543|   -0.0533|
|age7                              |  -0.0084|    0.0063|   -1.3388|  0.1806|  -0.0207|    0.0039|
|age8                              |  -0.0415|    0.0053|   -7.8546|  0.0000|  -0.0519|   -0.0312|
|age9                              |  -0.0202|    0.0053|   -3.8291|  0.0001|  -0.0306|   -0.0099|
|age10                             |  -0.0034|    0.0053|   -0.6396|  0.5224|  -0.0137|    0.0070|
|age11                             |   0.0203|    0.0053|    3.8547|  0.0001|   0.0100|    0.0306|
|age12                             |   0.0317|    0.0053|    5.9914|  0.0000|   0.0213|    0.0420|
|age13                             |   0.0351|    0.0053|    6.6100|  0.0000|   0.0247|    0.0455|
|age14                             |   0.0404|    0.0053|    7.6387|  0.0000|   0.0300|    0.0508|
|age15                             |   0.0224|    0.0052|    4.2935|  0.0000|   0.0122|    0.0327|
|age16                             |  -0.0259|    0.0052|   -4.9454|  0.0000|  -0.0362|   -0.0156|
|age17                             |  -0.1039|    0.0053|  -19.4664|  0.0000|  -0.1143|   -0.0934|
|age18                             |  -0.1465|    0.0055|  -26.7334|  0.0000|  -0.1572|   -0.1357|
|age19                             |  -0.1619|    0.0058|  -27.9666|  0.0000|  -0.1732|   -0.1505|
|age20                             |  -0.1746|    0.0063|  -27.6608|  0.0000|  -0.1870|   -0.1623|
|age21                             |  -0.1832|    0.0066|  -27.8625|  0.0000|  -0.1961|   -0.1703|
|age88                             |  -0.0812|    0.0106|   -7.6300|  0.0000|  -0.1020|   -0.0603|
|province11                        |   0.0262|    0.0117|    2.2332|  0.0255|   0.0032|    0.0493|
|province12                        |  -0.0031|    0.0067|   -0.4593|  0.6460|  -0.0162|    0.0100|
|province13                        |   0.0034|    0.0070|    0.4809|  0.6306|  -0.0103|    0.0171|
|province24                        |   0.0070|    0.0056|    1.2610|  0.2073|  -0.0039|    0.0179|
|province35                        |   0.0163|    0.0055|    2.9437|  0.0032|   0.0054|    0.0271|
|province46                        |   0.0136|    0.0064|    2.1187|  0.0341|   0.0010|    0.0262|
|province47                        |   0.0367|    0.0066|    5.5399|  0.0000|   0.0237|    0.0497|
|province48                        |   0.0255|    0.0058|    4.4339|  0.0000|   0.0142|    0.0368|
|province59                        |   0.0181|    0.0057|    3.1742|  0.0015|   0.0069|    0.0292|
|province70                        |  -0.0743|    0.0135|   -5.4860|  0.0000|  -0.1009|   -0.0478|